The field line map approach for simulations of magnetically confined plasmas

نویسندگان

  • Andreas Stegmeir
  • David Coster
  • Omar Maj
  • Klaus Hallatschek
  • Karl Lackner
چکیده

Predictions of plasma parameters in the edge and scrape-off layer of tokamaks is difficult since most modern tokamaks have a divertor and the associated separatrix causes the usually employed field/flux-aligned coordinates to become singular on the separatrix/Xpoint. The presented field line map approach avoids such problems as it is based on a cylindrical grid: standard finite-difference methods can be used for the discretisation of perpendicular (w.r.t. magnetic field) operators, and the characteristic flute mode property ( k‖ k⊥ ) of structures is exploited computationally via a field line following discretisation of parallel operators which leads to grid sparsification in the toroidal direction. This paper is devoted to the discretisation of the parallel diffusion operator (the approach take is very similar to the flux-coordinate independent (FCI) approach which has already been adopted to a hyperbolic problem [1, 2]). Based on the support operator method, schemes are derived which maintain the self-adjointness property of the parallel diffusion operator on the discrete level. These methods have very low numerical perpendicular diffusion compared to a naive discretisation which is a critical issue since magnetically confined plasmas exhibit a very strong anisotropy. Two different versions of the discrete parallel diffusion operator are derived: the first is based on interpolation where the order of interpolation and therefore the numerical diffusion is adjustable; the second is based on integration and is advantageous in cases where the field line map is strongly distorted. The schemes are implemented in the new code GRILLIX, and extensive benchmarks and numerous examples are presented which show the validity of the approach in general and GRILLIX in particular.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UW-CPTC 04-1 (Revised2) Most Electron Heat Transport Is Not Anomalous; It’s A Paleoclassical Process In Toroidal Plasmas

Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature is equilibrated along magnetic field lines a long length L (>> periodicity length πR0q), which is the minimum of the electron coll...

متن کامل

Most electron heat transport is not anomalous; it is a paleoclassical process in toroidal plasmas.

It is hypothesized that radial electron heat transport in magnetically confined toroidal plasmas results from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature is equilibrated along magnetic field lines a long length L (>> poloidal periodicity length piR0q), which is the minimum of the electron c...

متن کامل

Pressure profiles of plasmas confined in the field of a magnetic dipole

Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the suppo...

متن کامل

Stimulated Emission of Fast Alfvén Waves within Magnetically Confined Fusion Plasmas.

A fast Alfvén wave with a finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer midplane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear fi...

متن کامل

Size scaling of turbulent transport in magnetically confined plasmas.

Transport scaling with respect to device size in magnetically confined plasmas is critically examined for electrostatic ion-temperature-gradient turbulence using global gyrokinetic particle simulations. It is found, by varying device size normalized by ion gyroradius while keeping other dimensionless plasma parameters fixed, that fluctuation scale length is microscopic in the presence of zonal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Physics Communications

دوره 198  شماره 

صفحات  -

تاریخ انتشار 2016